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to the nonsymmetric stretch. The fact that this was 
the case for the addition of methylene to ethylene is 
somewhat surprising since here one might expect a large 
interaction constant due to the two bonds being attached 
to a common atom. These results, together with the 
discussion of the previous paragraph, indicate that, in 
general, transition states for cycloaddition reactions 
will very likely be nonsymmetric. 

Finally, it is worth remarking that although transi
tion states for cycloadditions may be nonsymmetric, 
this does not necessarily mean that these reactions will 
proceed via a nonconcerted (stepwise) mechanism. 
This can only be determined by locating the true transi
tion states and examining the force constants. 
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Synthesis of //wis-Bicyclo^.l.Olheptanes1 

Sir: 

Since the first synthesis of a ?ra«.s-bicyclo[«.1.0]alkane 
(I)2 a considerable number of reports have appeared 
on the syntheses3-10 and reactions11-14 of /raws-bicyclo-
[6.1.0]nonanes and ?ra«5-bicyclo[5.1.0]octanes and their 
derivatives. The ?rans-bicyclo[w.l.O]alkanes in addi
tion to the angle strain that is common to all cyclopro-
panes have a torque or twist on the zero bridge if the 
size of the n bridge is sufficiently small.15 From the 
reports that have appeared11-14 the enhanced reactivity 
can be detected when n = 5 but should be much more 
obvious if n were reduced to 4. 

We wish to report that we have synthesized trans-
bicyclo[4.1.0]heptan-2-one (2) and //-a«.s-bicyclo[4.1.0]-
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heptan-trans- and -c/s-2-ols (3 and 4), the first examples 
of a ?/-a«5-bicyclo[4.1.0]heptane. The synthesis was 
carried out starting with cyclohexane-l,2-dione (5) 
which on treatment with acetic anhydride gave the enol 
acetate 6 in 90% yield.16 Treatment of 6 under Sim
mons-Smith conditions gave the acetoxy ketone 7, 
mp 69-70°, in 20% yield.17'18 Reaction of 7 with 
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sodium methoxide at room temperature for 3 min re
sulted in the alcoholysis of the acetate and partial re
arrangement (89%) to give a mixture of ketols 8 and 9 
which had JW 4 at 1785 and 1695 cm -1.19 The mixture 
on reaction with trimethylchlorosilane gave in 89% 
yield an ether (90% purity) which was further purified 
by spinning band distillation (bp 93° (16 mm)) and was 
identified from its carbonyl stretching (CCl4) at 1780 
cm - 1 as 10.20 

Si(CH3)3 
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Reduction of 10 with lithium tri-ferl-butoxyaluminum 
hydride gives two diols in 88 % yield. After separation 
of the two diols by column chromatography on alumina 
the major product 11 could be converted in 79% yield 
to the acetonide 12 on treatment with 2,2-dimethoxy-
propane21 establishing that 11 was a cis diol and that 
the minor product, an isomer of 11, must be the trans 
diol 13.20 
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With 11 on hand we proposed to take advantage of 
the stereospecificity of the glycol monotosylate rear
rangement to form the desired product 2. The stereo-
specificity of such rearrangements has been well estab
lished in the synthesis of many bicyclic systems22-24 

including ?ra«.s-bicyclo[7.1.0]decan-2-one.1 The most 
important feature for our choice was that the rearrange
ment could be run under very mild conditions.1,22 

Thus, treatment of 11 with tosyl chloride in pyridine 
and rearrangement of the monotosylate 14 with 1 
equiv of potassium tert-butoxide in THF for 10 min gave 
a product in 83 % yield which we assigned as 2. Molecu
lar distillation gave a pure product which exhibited 
v™l 3010'and 1703 cm"1 and S (CCl4) +0.4 ppm (1 
H, m, cyclopropyl and no resonances below 2.5 ppm).18 

When the reaction was allowed to proceed for 19 hr and 
with 2 equiv of potassium /er/-butoxide, a different prod
uct was isolated in 73% yield. This product, 15, was 
identical in all respects with cz's-bicyclo[4.1.0]heptan-2-
one prepared by a known route:25 v^ 1690 cm - 1 and 
5 (CCl4) 1.0 ppm (highest field multiplet). The isolation 
of 15 is consistent with the initial formation of 2 followed 
by isomerization to 15. When the rearrangement was 
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run in /er/-butyl alcohol-c? the product contained less than 
33 mol % deuterium26 indicating that the rearrangement 
proceeds primarily without enolization of any kind. 

If the rearrangement of 14 is done in the presence 
of a reducing agent, such as potassium tri-rerr-butoxy-
aluminum hydride, the ketone 2 can be reduced to a 
mixture of alcohols 3 and 4 in a ratio of 2:1, respec
tively. Comparison of the nmr and infrared spectra 
of 3 and 4 and the known c;'5-bicyclo[4.1.0]heptan-cw-
and -7ra«s-2-ols25 (16 and 17) indicated that the com-
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pounds were not the same. The presence of the com
plex multiplets in the nmr spectrum of 3 at 6 (CCl4) 
—0.5 ppm and for 4 at 0.2 ppm clearly indicated the 
presence of cyclopropyl in 3 and 4. On the basis of 
the chemical shifts of 16 and 17 and the possible con
formations for 3 and 4 one can tentatively assign the 
structure of the two alcohols as 7ra«s-bicyclo[4.1.0]-
heptan-trans-2-ol for 3 and ?ra«^-bicyclo[4.1.0]heptan-
cw-2-ol for 4.14 The alcohols are not stable to glpc 
but can be purified by trap-to-trap distillation (54% 
yield). Acetates and other derivatives of 3 and 4 can 
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be formed by standard methods without undue diffi
culty. 

We are examining the reaction of the ketone 2, the 
alcohols 3 and 4, and the derivatives of 3 and 4 to deter
mine the reactivity of /ra«5-bicyclo[4.1.0]heptanes. 
We have also synthesized by similar methods cis- and 
OYM.?-bicyclo[5.1.0]octanes and cis- and frans-bicyclo-
[6.1.0]nonanes and are examining their reactivity to
ward a variety of reagents. 
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New Anionic Rearrangements. XVI. 1,2-Anionic 
Rearrangement from Sulfur to Carbon in 
Benzylthiotrimethy Isilane1_ 3 

Sir: 

Many organic ethers may be converted to isomeric 
alcohols in the presence of excess organolithium reagent 
by the classical Wittig rearrangement.4 The analogous 
rearrangement of organic sulfides to mercaptans has 
not previously been observed.5 Generally, metalation 
of the rather acidic proton a to sulfur in sulfides,6 

sulfoxides,10 and sulfones11 produces stable carbanions 
which do not rearrange. 

We now find that benzylthiotrimethylsilane (1) re
arranges rapidly and in high yield12,14 to a-trimethyl-
silylbenzylmercaptan (2) in the presence of excess tert-
butyllithium.17 This is apparently the first example 
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